Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Li, Yingzhen; Mandt, Stephan; Agrawal, Shipra; Khan, Emtiyaz (Ed.)We study the problem of causal effect estimation in the presence of unobserved confounders, focusing on two settings: instrumental variable (IV) regression with additional observed confounders, and proxy causal learning. Our approach uses a singular value decomposition of a conditional expectation operator combined with a saddle-point optimization method. In the IV regression setting, this can be viewed as a neural network generalization of the seminal approach due to Darolles et al. (2011). Saddle-point formulations have recently gained attention because they mitigate the double-sampling bias and are compatible with modern function approximation methods. We provide experimental validation across various settings and show that our approach outperforms existing methods on common benchmarks.more » « lessFree, publicly-accessible full text available May 3, 2026
- 
            Personalization has emerged as a critical research area in modern intelligent systems, focusing on mining users' behavioral history and adapting to their preferences for delivering tailored experiences. Despite the remarkable few-shot capabilities exhibited by black-box large language models (LLMs), the inherent opacity of their model parameters presents significant challenges in aligning the generated output with individual expectations. Existing solutions have primarily focused on prompt design to incorporate user-specific profiles and behaviors; however, such approaches often struggle to generalize effectively due to their inability to capture shared knowledge among all users. To address these challenges, we propose HYDRA, a model factorization framework that captures both user-specific behavior patterns from historical data and shared general knowledge among all users to deliver personalized generation. In order to capture user-specific behavior patterns, we first train a reranker to prioritize the most useful information from top-retrieved relevant historical records. By combining the prioritized history with the corresponding query, we train an adapter to align the output with individual user-specific preferences, eliminating the reliance on access to inherent model parameters of black-box LLMs. Both the reranker and the adapter can be decomposed into a base model with multiple user-specific heads, resembling a hydra. The base model maintains shared knowledge across users, while the multiple personal heads capture user-specific preferences. Experimental results demonstrate that \method outperforms existing state-of-the-art prompt-based methods by an average relative improvement of 9.01% across five diverse personalization tasks in the LaMP benchmark.more » « lessFree, publicly-accessible full text available December 10, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                     Full Text Available
                                                Full Text Available